
Document Number: 330691-002

zlib* Sample Patch for
Intel® QuickAssist Technology
Application Note

November 2014

zlib* Sample Patch for Intel® QuickAssist Technology
Application Note November 2014
2 Document Number: 330691-002

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked "reserved" or "undefined.” Do not finalize a design with this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm
Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (“products”) in development by Intel that have not been
made commercially available to the public, i.e., announced, launched or shipped. They are never to be used as “commercial” names for products. Also,
they are not intended to function as trademarks.
Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2014, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

zlib* Sample Patch for Intel® QuickAssist Technology
November 2014 Application Note
Document Number: 330691-002 3

zlib Sample Patch

Contents

1.0 Introduction ..5
1.1 About this Manual ...5
1.2 Software Overview ..5

1.2.1 Features ...5
1.2.2 Mux Layer Support ...7
1.2.3 Limitations ..7

1.3 Documentation ...8
1.3.1 Where to Find Current Software and Documentation8
1.3.2 Product Documentation ...8
1.3.3 Documentation Conventions ..9

1.4 Software Requirements ..9

2.0 Unpacking and Building the Software ..9
2.1 Installing zlib and Applying the Patch ...9
2.2 Test Applications ... 10

2.2.1 Updating the Acceleration Configuration .. 10
2.2.2 Running the Example Applications .. 11

2.2.2.1 zpipe Application... 11
2.2.2.2 minigzip Application .. 12
2.2.2.3 comptestapp Test Application ... 12

2.2.3 Verifying Hardware Acceleration ... 14
2.2.4 Library Linking Instructions ... 15

Tables
1 zlib Functions supported when compression is enabled..6
2 zlib Functions not supported when compression is enabled ..6
3 New zlib Functions to enable hardware compression/decompression7
4 Related Documents ..8

zlib Sample Patch

zlib* Sample Patch for Intel® QuickAssist Technology
Application Note November 2014
4 Document Number: 330691-002

Revision History

§ §

Date Revision Description

November 2014 002
Updated Section 1.2.3, “Limitations” on page 7
Change bars indicate areas of change.

September 2014 1.0 Initial public release; was previously document number 477931

zlib* Sample Patch for Intel® QuickAssist Technology
November 2014 Application Note
Document Number: 330691-002 5

zlib Sample Patch

1.0 Introduction

1.1 About this Manual
This document discusses the following topics about the zlib* Sample Patch for Intel®
QuickAssist Technology:

• features and limitations
• build and installation
• test application usage

In this document, for convenience:
• Software package is used as a generic term for the Intel® Communications Chipset

89xx Series Software package or the Intel® Communications Chipset 8925 to 8955
Series Software package.

• Acceleration drivers is used as a generic term for the software that allows the
QuickAssist Software Library APIs to access the Intel® QuickAssist Accelerator(s)
integrated in the Intel® Communications Chipset 8900 to 8920 Series or the Intel®
Communications Chipset 8925 to 8955 Series PCH.

1.2 Software Overview
This section lists the features and limitations of the zlib* Sample Patch for Intel®
QuickAssist Technology.

1.2.1 Features

This software enables access to the Intel® QuickAssist Technology implemented on
Intel® Communications Chipset 8900 to 8920 Series based platforms and Intel®
Communications Chipset 8925 to 8955 Series platforms using the zlib library APIs. The
zlib software library and the Intel® QuickAssist Technology both implement the deflate
algorithm as described in RFC 1951. Even though both implementations are compliant
to RFC 1951, it is important to note that they are not equivalent in all cases.

The current version of the zlib Sample patch supports the co-existence of the zlib
Sample patch and the libcrypto* (OpenSSL*) Sample Patch for Intel® QuickAssist
Technology (see Table 4).

Table 1 lists zlib functions that are supported when hardware compression is enabled.
Table 2 on page 6 lists zlib functions that are not supported when hardware
compression/decompression is enabled.

zlib Sample Patch

zlib* Sample Patch for Intel® QuickAssist Technology
Application Note November 2014
6 Document Number: 330691-002

Table 1. zlib Functions supported when compression is enabled

Function

deflateInit

deflateInit2

• calling this function offloads deflate processing to the Intel® QuickAssist Technology’s
implementation

• supports 8 K and 32 K window sizes; note, however, that the amount of history maintained
between requests to the hardware depends on the compression level (for more details, see the
appropriate programmer’s guide shown in Table 4).

• memLevel and strategy parameter values are not honored

deflate
• supports Z_NO_FLUSH, Z_FINISH, and Z_SYNC_FLUSH flush flags
• Z_SYNC_FLUSH immediately sends data to the acceleration driver rather than internal buffering

within zlib library

deflateEnd

deflateReset

deflateBound

inflate
• calling this function offloads inflate processing to the Intel® QuickAssist Technology’s

implementation
• last request must be submitted with a Z_FINISH flush flag
• supports only Z_NO_FLUSH, Z_FINISH, and Z_SYNC_FLUSH flush flags
• Z_SYNC_FLUSH is used to disable buffering within the zlib library before sending to acceleration

driver

inflateEnd

inflateInit

inflateInit2

• with hardware decompression enabled there is no support for automatic gzip/zlib file detection
• supports 8 K and 32 K window sizes

inflateReset

zlibVersion

Table 2. zlib Functions not supported when compression is enabled (Sheet 1 of 2)

Function Behavior

deflateSetDictionary returns Z_OK

deflateCopy returns Z_STREAM_ERROR

deflateParams returns Z_OK

deflateTune returns Z_OK

deflatePending returns Z_OK

deflatePrime returns Z_OK

deflateSetHeader returns Z_OK

inflateSetDictionary returns Z_STREAM_ERROR

inflateSync returns Z_STREAM_ERROR

inflateCopy returns Z_STREAM_ERROR

inflateReset2 This function should not be called externally.

inflatePrime returns Z_STREAM_ERROR

inflateMark returns -1L << 16

zlib* Sample Patch for Intel® QuickAssist Technology
November 2014 Application Note
Document Number: 330691-002 7

zlib Sample Patch

Table 3 lists zlib functions that were added to the zlib interface to enable hardware
compression/decompression. After applying the patch, the function definitions are
defined in zlib.h.

Mux LM

1.2.2 Mux Layer Support

The zlib*Sample Patch for Intel® QuickAssist Technology supports running with both
Intel® Communications Chipset 8900 to 8920 Series Accelerators and Intel®
Communications Chipset 8925 to 8955 Series Accelerators simultaneously via the Mux
Layer.

As a prerequisite, the Intel® QuickAssist Technology Driver must have been built with
Mux support enabled.

To build the patched zlib* to work with Mux you must export an environment variable
with a command such as:

export WITH_CPA_MUX=1

Note: Only define the environment variable if you need to use the Mux Layer.

1.2.3 Limitations

The zlib* Sample Patch for Intel® QuickAssist Technology has the following limitations:
• This software enables access to the Intel® QuickAssist Technology using the zlib

library APIs. Even though the zlib software library and the Intel® QuickAssist
Technology both implement a deflate-compliant (RFC 1951) compressor and
decompressor, their implementations are not equivalent in all cases.

• This zlib library should not be installed as the main system zlib library via the make
install command because when hardware compression/decompression is
enabled, it does not support full system functionality.

• This software release uses static Huffman Trees.

Note: Review the README.txt file in the package for other known limitations.

inflateGetHeader returns Z_STREAM_ERROR

inflateBackInit undefined behavior - not currently stubbed

inflateBack undefined behavior - not currently stubbed

inflateBackEnd undefined behavior - not currently stubbed

Table 2. zlib Functions not supported when compression is enabled (Sheet 2 of 2)

Function Behavior

Table 3. New zlib Functions to enable hardware compression/decompression

Function

zlibSetupEngine

zlibStartupEngine

zlibShutdownEngine

zlib Sample Patch

zlib* Sample Patch for Intel® QuickAssist Technology
Application Note November 2014
8 Document Number: 330691-002

1.3 Documentation

1.3.1 Where to Find Current Software and Documentation

Refer to Table 4 a list of all Intel® QuickAssist Technology software release and
associated collateral.

All publicly released Intel® QuickAssist Technology software release associated
collateral can be found by visiting the Intel® Open Source Technology Center at:
https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-
patches

1.3.2 Product Documentation

This release includes:
• zlib* Sample Patch for Intel® QuickAssist Technology Application Note (this

document)

The documents listed in Table 4 may be accessed as described in Section 1.3.1.

Notes:
1. All publicly released Intel® QuickAssist Technology software release associated collateral listed can be

found by visiting the Intel® Open Source Technology Center at: https://01.org/packet-processing/
intel%C2%AE-quickassist-technology-drivers-and-patches.

2. All Intel Confidential associated collateral listed can be found on the Intel Business Portal.

Table 4. Related Documents

Document Name Number

Intel® Communications Chipset 8900 to 8920 Series Software Programmer’s Guide 3307531

Intel® QuickAssist Technology API Programmer’s Guide 3306841

Intel® QuickAssist Technology Cryptographic API Reference Manual 3306851

Intel® QuickAssist Technology Data Compression API Reference Manual 3306861

Intel® QuickAssist Technology Performance Optimization Guide 3306871

libcrypto* (OpenSSL*) Sample Patch for Intel® QuickAssist Technology 4776292

libcrypto* (OpenSSL*) Sample Patch for Intel® QuickAssist Technology Application Note
Note: This document is included in 477629.

1

 Intel® Communications Chipset 89xx Series Software for Linux* - Release Notes
(Version: QATmux.L.1.1.0-60 Release Notes)

3306831

Intel® Communications Chipset 89xx Series Software for Linux* Getting Started Guide 3307501

Intel® Communications Chipset 8925 to 8955 Series Software – Programmer’s Guide 3306831

Intel® Communications Chipset 8900 to 8920 Series Performance Brief 3307531

Intel® Communications Chipset 8900 to 8920 Series Performance Brief 4702522

Intel® Communications Chipset 8925 to 8955 Series Performance Brief 5270692

zlib* Sample Patch for Intel® QuickAssist Technology (development branch)
(zlib_quickassist_patch_L.0.4.7_001_devbranch.zip)

1

libcrypto* (OpenSSL*) Sample Patch for Intel® QuickAssist Technology (development
branch) (libcrypto_quickassist_patch_l.0.4.6-008_devbranch.zip)

1

https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches
https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches
https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches
https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches

zlib* Sample Patch for Intel® QuickAssist Technology
November 2014 Application Note
Document Number: 330691-002 9

zlib Sample Patch

1.3.3 Documentation Conventions

The following conventions are used in this manual:
• Courier font - code examples, command line entries, API names, parameters,

filenames, directory paths, and executables
• Bold text - graphical user interface entries and buttons

1.4 Software Requirements
• Operating system: Fedora 16 64-bit version
• Kernel: GNU*/Linux* 3.1
• zlib 1.2.8
• Intel® Communications Chipset 89xx Series Software for Linux* version 1.5 or

later, or Intel® Communications Chipset 8925 to 8955 Series Software for Linux*
version 1.1 or later

2.0 Unpacking and Building the Software
This chapter provides instructions for unpacking and building the zlib* Sample Patch for
Intel® QuickAssist Technology. The release consists of the patch file and the test
application.

Note: Before installing the zlib* Sample Patch for Intel® QuickAssist Technology, you must
install the acceleration software package for your platform. Refer to the Getting Started
Guide for your platform for detailed instructions.

Note: System commands given in this chapter assume that the user is issuing commands
from a bash shell. This is the default shell. Use the echo $0 command to verify use of
the bash shell or run /bin/bash to switch to the bash shell.

2.1 Installing zlib and Applying the Patch
Perform the following steps to install zlib and apply the zlib patch.
1. Open a terminal window and switch to superuser:

su

Password: <enter root password>

2. Set the $ICP_ROOT directory. By convention this will be:
export ICP_ROOT=/QAT/QAT1.6

If the driver was compiled with support for the Intel® Communications Chipset
8900 to 8920 Series only, this variable may need to be set to one of the following:
export ICP_ROOT=/QAT/QAT1.5

export ICP_ROOT=/QAT

If the following command does not return any files or directories, $ICP_ROOT was
not set correctly:
ls $ICP_ROOT/quickassist

3. Create a folder named $ICP_ROOT/quickassist/shims/zlib. You may choose
another directory name if desired. The recommended directory follows the
convention of placing patches in a common location.
mkdir -p $ICP_ROOT/quickassist/shims/zlib

4. Change directories to the newly created directory:
cd $ICP_ROOT/quickassist/shims/zlib

zlib Sample Patch

zlib* Sample Patch for Intel® QuickAssist Technology
Application Note November 2014
10 Document Number: 330691-002

5. Download the original zlib-1.2.8 software package.
wget http://zlib.net/zlib-1.2.8.tar.gz

6. Extract the source files from the zlib software package to the zlib directory:
tar xzof zlib-1.2.8.tar.gz

7. Extract the zlib* Sample Patch for Intel® QuickAssist Technology software package
to the zlib directory:
tar xzof <path_to>/zlib-1.2.8-qat.L.<version>.tar.gz

8. Apply the patch by performing the following command:
cd zlib-1.2.8

patch -p0 < ../zlib-1.2.8-qat.patch

9. Uninstall the Intel® QuickAssist Technology Memory Management kernel module
(qat_mem.ko), if installed:
rmmod qat_mem

10. Setup environmental variables:
export ICP_BUILD_OUTPUT=$ICP_ROOT/build

export ZLIB_ROOT=$ICP_ROOT/quickassist/shims/zlib/zlib-1.2.8

If and only if the Intel® QuickAssist Technology driver was built with mux layer
support, enable this also in the zlib build:
export WITH_CPA_MUX=1

11. Build the Intel® QuickAssist Technology Memory Management kernel module
(qat_mem.ko):
cd $ZLIB_ROOT/contrib/qat/qat_mem

make

12. Install the memory kernel module:
insmod ./qat_mem.ko

13. If compiling for use with Intel® Communications Chipset 8925 to 8955 Series
hardware acceleration and not Intel® Communications Chipset 8900 to 8920
Series, set the ZLIB_DH895XCC variable:
export ZLIB_DH895XCC=1

Note: If WITH_CPA_MUX=1 is set, do not set ZLIB_DH895XCC=1.
14. Configure and build zlib by performing the following steps:

cd $ZLIB_ROOT

./configure

make

2.2 Test Applications
The zlib* Sample Patch for Intel® QuickAssist Technology package contains the
following test applications:

• zpipe Application
• minigzip Application
• comptestapp Test Application

Note: As a reminder, setting the environment variable ZLIB_DH895xCC=1 or
WITH_CPA_MUX=1 is required if using the Intel® Communications Chipset 8925 to
8955 Series. Otherwise, the applications will not use hardware acceleration.

zlib* Sample Patch for Intel® QuickAssist Technology
November 2014 Application Note
Document Number: 330691-002 11

zlib Sample Patch

2.2.1 Updating the Acceleration Configuration

Prior to running any of the following applications, updated configuration files must be in
place and the acceleration service must be restarted. This only needs to be done on the
initial run.

The configuration files included in the config directory listed below enable both Crypto
and Compression services. If your application is only using the compression service,
the crypto services should be disabled in the configuration file. This will increase overall
compression performance because more memory will be available on the device for
compression. This is done by updated the ServicesEnabled parameter in the
[GENERAL] section.

For Intel® Communications Chipset 8900 to 8920 Series:
cp $ICP_ROOT/quickassist/shims/zlib/zlib-1.2.8/contrib/qat/config/dh89xxcc/
multi_thread_optimized/dh89xxcc_qa_dev0.conf

/etc/dh89xxcc_qa_dev0.conf

cp $ICP_ROOT/quickassist/shims/zlib/zlib-1.2.8/contrib/qat/config/dh89xxcc/
multi_thread_optimized/dh89xxcc_qa_dev0.conf

/etc/dh89xxcc_qa_dev1.conf

For Intel® Communications Chipset 8925 to 8955 Series:
cp $ICP_ROOT/quickassist/shims/zlib/zlib-1.2.8/contrib/qat/config/dh895xcc/
multi_thread_optimized/dh895xcc_qa_dev0.conf

/etc/dh895xcc_qa_dev0.conf

cp $ICP_ROOT/quickassist/shims/zlib/zlib-1.2.8/contrib/qat/config/dh895xcc/
multi_thread_optimized/dh895xcc_qa_dev0.conf

/etc/dh895xcc_qa_dev1.conf

Note: If more than two acceleration devices are present, copy the same configuration to
dev2, dev3, etc. If running with the mux layer, both types of configuration files should
be updated as above.

Restart the acceleration service to enable the configuration changes:

service qat_service restart

2.2.2 Running the Example Applications

2.2.2.1 zpipe Application

zpipe is an application included with the zlib package that highlights proper usage of
the zlib inflate() and deflate() functions. The application is patched to take
advantage of Intel® QuickAssist Technology functionality.

The zpipe application can be built with the following commands:
cd $ZLIB_ROOT

make zpipe

The application is located at:
$ZLIB_ROOT

Note: Prior to running the zpipe test application, the Intel® QuickAssist Technology Memory
Management kernel module (qat_mem.ko) must be installed. Refer to step 12 of
Section 2.1, “Installing zlib and Applying the Patch” on page 9.

The following example will compress an example file named file.txt:

zlib Sample Patch

zlib* Sample Patch for Intel® QuickAssist Technology
Application Note November 2014
12 Document Number: 330691-002

cd $ZLIB_ROOT

ls -l > file.txt

./zpipe < file.txt > file.txt.z

The output/compressed file generated is file.txt.z.

The following example will uncompress the input file, file.txt.z:
./zpipe -d < file.txt.z > file.txt

The output/uncompressed file generated is file.txt.

2.2.2.2 minigzip Application

The minigzip application was built when the make in $ZLIB_ROOT was executed (Step
14 in Section 2.1). The application is located at:

$ICP_ROOT/quickassist/shims/zlib/zlib-1.2.8

Note: Prior to running the minigzip test application, the Intel® QuickAssist Technology
Memory Management kernel module (qat_mem.ko) must be installed. Refer to step 12
of Section 2.1, “Installing zlib and Applying the Patch” on page 9.

The example shown below will compress an example file named file.txt:
cd $ZLIB_ROOT

ls -l > file.txt

./minigzip file.txt

The output/compressed file generated is file.txt.gz.

The example shown below will uncompress the input file, file.txt.gz:
./minigzip -d file.txt.gz

The output/uncompressed file generated is file.txt.

2.2.2.3 comptestapp Test Application

A stand-alone test application called comptestapp is also included with this release.
comptestapp uses Corpus files (Calgary, Canterbury, and Silesia). One or more of the
Corpus files must be obtained and placed in the /lib/firmware directory as described
below.

The Silesia corpus files can be obtained from http://www.data-compression.info/
Corpora/SilesiaCorpus/index.htm

Build the comptestapp test application:
cd $ZLIB_ROOT/contrib/qat/qat_zlib_test/
make

Usage Information:
./comptestapp [-t <type>] [-c <count>] [-n <count>] [-nc <count>] [-k <size>]
[-o <corpus>] [-u] [-af] [-dc] [-dd] [-f <filepath>] [-l <compressionlevel>]
[-ddb] [-dib] [-s <streamtype>] [-w <windowsize>] [-pc] [-pi <interval>] [-v]
[-h]

Where:

-t specifies the test type to run (see below)

-c specifies the test iteration count

-n specifies the number of threads to run

-nc specifies the number of CPU cores

-k specifies the chunk size in bytes

-o specifies the corpus to use for the tests (see below)

http://www.data-compression.info/Corpora/SilesiaCorpus/index.htm
http://www.data-compression.info/Corpora/SilesiaCorpus/index.htm

zlib* Sample Patch for Intel® QuickAssist Technology
November 2014 Application Note
Document Number: 330691-002 13

zlib Sample Patch

-u display cpu usage per core

-af enables core affinity

-dc disables the QAT Engine for Compression

-dd disables the QAT Engine for Decompression

-f specifies the filepath for a corpus test

-l specifies the compression level

-ddb disables internal buffering for shim deflate

-dib disables internal buffering for shim inflate

-s specifies the type of deflate stream (see below)

-w specifies the deflate window size (see below)

-pc allow partial chunks

-pi specifies the polling interval in nanoseconds

-v enable verification of data (use with -c 1)

-h print this usage

and where the -t test type is:

1 = Corpus Compression

2 = Corpus Decompression

and where the -o corpus is:

0 = Custom (customfile.bin)

1 = Canterbury Corpus

2 = Calgary Corpus

3 = Silesia Corpus

and where the -s streamtype is:

0 = Raw Deflate Stream

1 = Zlib Format Deflate Stream

2 = Gzip Format Deflate Stream

and where the -w windowsize is:

5 = 8KB Deflate Window Size

7 = 32KB Deflate Window Size

Performance is affected by the choice of options above. The following guidance should
help select settings that provide good performance:

For -c the test iterations, you should pick a figure in the thousands, preferably one that
is divisible by the number of threads. This allows a good average throughput.

For -n number of threads, you should pick a figure that will keep the accelerator busy
but not cause too much contention. Usually figures between 16 and 128 work well, with
figures around 20-40 being optimum.

For -nc number of cores, there is no need to restrain the number of cores unless that is
specifically the performance you want to measure.

For -k chunksize, you should only need to set this parameter if you disable the shim
from buffering up data before submitting to the accelerator using the -ddb or -dib flags.
In those cases you should set this parameter fairly high as larger chunksizes will result
in less engine requests. Recommended chunksize to show best performance will usually
be 32768 bytes or 65536 bytes.

zlib Sample Patch

zlib* Sample Patch for Intel® QuickAssist Technology
Application Note November 2014
14 Document Number: 330691-002

For -l compression level, choosing a lower compression level will increase performance.
To show best performance, it is recommended to run with compression level 1.

For -pi polling interval, the default polling interval is 100,000ns. Decreasing this figure
will increase CPU usage (and cause more contention) but allow messages to be
processed quicker. Increasing the figure has the opposite effect. To show best
performance it has been found that a figure between 100,000 and 400,000 gives the
best results. There is little benefit to be gained in reducing the polling interval below
100,000ns.

It is not recommended any of the other options be changed or specified when running
for best performance.

A good example test to run is:
./comptestapp -t 1 -c 16384 -n 32 -l 1

A test summary is presented when the comptestapp test completes. For Intel®
Communications Chipset 8900 to 8920 Series fitted with one device, the test summary
will look similar to the following:

./comptestapp -t 1 -c 16384 -n 32 -l 1

<test logging>

Elapsed time = 52583.293 msec

Operations = 16384

Time per op = 3209.429 usec (311 ops/sec)

Elapsed cycles = 136716776365

Throughput = 8092.39 (Mbps)

For the Intel® Communications Chipset 8925 to 8955 Series fitted with one device, the
test summary will look similar to the following:

./comptestapp -t 1 -c 16384 -n 32 -l 1

<test logging>

Elapsed time = 18739.580 msec

Operations = 16384

Time per op = 1143.773 usec (874 ops/sec)

Elapsed cycles = 24361436992

Throughput = 22707.27 (Mbps)

For more information on tuning, please see the Intel® QuickAssist Technology
Performance Optimization Guide (document number 330687), the Intel®
Communications Chipset 89xx Series Performance Brief (document number 470252),
and the Intel® Communications Chipset 8950 Performance Brief (document number
527069).

Note: If the test platform has more than one Intel® QuickAssist Technology accelerator, it is
strongly recommended that they have the exact same SKU and configuration.
Otherwise, the performance may be limited by the slowest SKU or configuration, due to
the implementation of the test application.

Note: Performance may vary depending on the platform configuration, including the version
of the patch and the specific product number of the acceleration device.

2.2.3 Verifying Hardware Acceleration

If the performance of the test applications is lower than expected, verify that hardware
acceleration is enabled. Check that the hardware has processed requests and
responses with the following commands.

For Intel® Communications Chipset 8900 to 8920 Series:
cat /proc/icp_dh89xxcc_dev0/qat0

zlib* Sample Patch for Intel® QuickAssist Technology
November 2014 Application Note
Document Number: 330691-002 15

zlib Sample Patch

For Intel® Communications Chipset 8925 to 8955 Series:
cat /proc/icp_dh895xcc_dev0/qat

2.2.4 Library Linking Instructions

To link an application to the shared library version of accelerated zlib will require linking
with the following additional libraries:

-ldl -lrt -lpthread

To link an application to the static library version of accelerated zlib will require linking
with the following additional libraries:

-L$(ICP_BUILD_OUTPUT) -licp_qa_al -ladf_proxy -losal -
lcrypto -ldl -lrt -lpthread

§ §

	zlib* Sample Patch for Intel® QuickAssist Technology
	Contents
	Tables

	1.0 Introduction
	1.1 About this Manual
	1.2 Software Overview
	1.2.1 Features
	1.2.2 Mux Layer Support
	1.2.3 Limitations

	1.3 Documentation
	1.3.1 Where to Find Current Software and Documentation
	1.3.2 Product Documentation
	1.3.3 Documentation Conventions

	1.4 Software Requirements

	2.0 Unpacking and Building the Software
	2.1 Installing zlib and Applying the Patch
	2.2 Test Applications
	2.2.1 Updating the Acceleration Configuration
	2.2.2 Running the Example Applications
	2.2.2.1 zpipe Application
	2.2.2.2 minigzip Application
	2.2.2.3 comptestapp Test Application

	2.2.3 Verifying Hardware Acceleration
	2.2.4 Library Linking Instructions

